
Prefix tree/Trie

Youkyum Kim



Used to store a collection of strings

Example:
sus
bruh
sussy
bro
ioi

s i

r

ob

u

a

s

u

r

h

o

i

Root node

End of a word



Implementation

2d array (ex. trie[n][26]) the 26 is for each letter in the alphabet 

(Does not have to be 26!)

An array endofword[n] for determining whether a node is the end of 

some string

Other features can easily be added depending on the problem



Direct Application: IOI 2008 Printer





1st observation: includes a collection of strings, thus we can 
use trie

2nd observation: notice that DFS of the trie starting at root 
node will be able to print every word once.

-When we move “forwards” in the trie, we print the letter.
-When we move “backwards” we print ‘-‘
-When we visit a node that is the end of a string, we print ‘P’. 
(keep a visited array so that we print P at most once for a node)



However notice the last word’s letters are not removed from the 
printer.

Thus, we need to make sure to print the longest word last.
(This can be done by simply getting the longest word 
w1w2w3…wk and making sure those letters are chosen last in 
DFS)



s1

s2

DFS other letters first



Trie used for optimisation: SAPO 2019 dna





1st step: DP
Set dp[i]=min no. of segments needed for first i letters (dp[i]=-1 if 
there are no such segments)

dp[k]=min(dp[c] where c<k and substring sc…sk is a segment)
If there are no such values, then dp[k]=-1



Now for a value k, we need to find all the possible 
substrings of the dna ending on sk that is also a segment (in 
O(n) time)

However, we can then simply store all the segments in a 
trie and traverse down the trie according to the letters sk, 
sk-1, …, s1 and check whether a node is the end of a 
segment.

 Thus the problem is done


